问卷结束后必须做的3项数据检查
收集完数据≠完成分析,忽略这一步后患无穷 当我们听到“问卷回收完成”的消息时, 很容易会产生一种错觉: “现在只剩下分析就好了!” “论文完成80%了!” 但如果你在这个阶段掉以轻心, 数据中的错误就会直接反映在统计结果上, 甚至在论文答辩时被教授要求重新分析数据的情况也并不少见。 ❗只收集数据、不进行检查,会导致什么? 掺杂不认真填写的问卷,信度下降 缺失值没有标准处理方式,影响分析进度 量表混用,无法正确选择统计方法 ✏️ 数据如果未经清洗,就如同“未加工的原料”,再多也无法直接使用! 🎯 数据分析前必须完成的3项检查 只要做好这3项,数据质量就能大幅提升👇 ✅ 1. 过滤不认真作答的问卷 需重点排查以下问题: 作答时间是否过短 远低于平均完成时间者,可信度较低 答案是否全部重复 如每一题都打“4分”,有可能是随意填写 逻辑前后矛盾 比如选择“从未发生”,却又填写了发生频率 ✔️ 这一步是确保数据可信度的基础! ✅ 2. 明确缺失值处理标准 千万不要随便跳过缺失值! 如何处理漏答题目? (删除?用均值替代?还是单独标注“未回答”?) 某个受访者缺失过多时,是否整个样本都剔除? ❗缺失值的处理方式会显著影响最终分析结果 ✅ 3. 检查变量编码与量表一致性 如果测量量表不统一,很多统计方法就无法适用。 例如: 有些题是 7分量表,有些却是 5分量表 忘了把反向题目(Reverse coding)重新编码 SPSS中变量名称混乱,难以识别 ✔️ 在导入SPSS前,请先整理出编码与量表对应表格 ✔ The Brain 提供数据清洗全流程服务 问卷调查 × 数据分析专业机构 – The Brain 我们不仅提供统计分析,还帮助你进行数据质量把控。 我们提供: 使用AI过滤无效问卷 缺失值检查与处理方案建议 编码一致性检查与变量整理 交付清洗后的分析数据文件 通过这些步骤, 你不仅提高了数据的可信度, 更提升了论文通过审核的可能性。 即使你回收了再多的问卷, 没有做“数据清洗”, 这些数据也无法直接用于论文撰写。 📌 现在就打开你的数据, 按照这个数据检查清单来一一确认, 这一个小动作, 将为你节省大量返工时间!